Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Étape 3.1
Laissez . Déterminez .
Étape 3.1.1
Différenciez .
Étape 3.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.1.4
Multipliez par .
Étape 3.2
Réécrivez le problème en utilisant et .
Étape 4
Associez et .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Associez et .
Étape 6.2
Annulez le facteur commun de .
Étape 6.2.1
Annulez le facteur commun.
Étape 6.2.2
Réécrivez l’expression.
Étape 6.3
Multipliez par .
Étape 7
L’intégrale de par rapport à est .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Laissez . Déterminez .
Étape 9.1.1
Différenciez .
Étape 9.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 9.1.4
Multipliez par .
Étape 9.2
Réécrivez le problème en utilisant et .
Étape 10
Étape 10.1
Placez le signe moins devant la fraction.
Étape 10.2
Associez et .
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
Multipliez par .
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
Étape 14.1
Associez et .
Étape 14.2
Annulez le facteur commun de .
Étape 14.2.1
Annulez le facteur commun.
Étape 14.2.2
Réécrivez l’expression.
Étape 14.3
Multipliez par .
Étape 15
L’intégrale de par rapport à est .
Étape 16
Simplifiez
Étape 17
Étape 17.1
Remplacez toutes les occurrences de par .
Étape 17.2
Remplacez toutes les occurrences de par .