Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Laissez , où . Puis . Depuis , est positif.
Étape 2
Étape 2.1
Simplifiez .
Étape 2.1.1
Simplifiez chaque terme.
Étape 2.1.1.1
Appliquez la règle de produit à .
Étape 2.1.1.2
Élevez à la puissance .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Appliquez l’identité pythagoricienne.
Étape 2.1.6
Réécrivez comme .
Étape 2.1.7
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2
Simplifiez les termes.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Annulez le facteur commun.
Étape 2.2.1.4
Réécrivez l’expression.
Étape 2.2.2
Associez et .
Étape 2.2.3
Simplifiez
Étape 2.2.3.1
Factorisez à partir de .
Étape 2.2.3.2
Appliquez la règle de produit à .
Étape 2.2.3.3
Élevez à la puissance .
Étape 2.2.3.4
Annulez le facteur commun à et .
Étape 2.2.3.4.1
Multipliez par .
Étape 2.2.3.4.2
Annulez les facteurs communs.
Étape 2.2.3.4.2.1
Factorisez à partir de .
Étape 2.2.3.4.2.2
Annulez le facteur commun.
Étape 2.2.3.4.2.3
Réécrivez l’expression.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Réécrivez comme .
Étape 4.3
Réécrivez en termes de sinus et de cosinus.
Étape 4.4
Multipliez par la réciproque de la fraction pour diviser par .
Étape 4.5
Multipliez par .
Étape 5
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
Séparez l’intégrale unique en plusieurs intégrales.
Étape 9
Appliquez la règle de la constante.
Étape 10
Étape 10.1
Laissez . Déterminez .
Étape 10.1.1
Différenciez .
Étape 10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 10.1.4
Multipliez par .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
Associez et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
L’intégrale de par rapport à est .
Étape 14
Simplifiez
Étape 15
Étape 15.1
Remplacez toutes les occurrences de par .
Étape 15.2
Remplacez toutes les occurrences de par .
Étape 15.3
Remplacez toutes les occurrences de par .
Étape 16
Étape 16.1
Associez et .
Étape 16.2
Appliquez la propriété distributive.
Étape 16.3
Associez et .
Étape 16.4
Multipliez .
Étape 16.4.1
Multipliez par .
Étape 16.4.2
Multipliez par .
Étape 17
Remettez les termes dans l’ordre.