Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Étape 2.1
Laissez . Déterminez .
Étape 2.1.1
Différenciez .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.4
Multipliez par .
Étape 2.2
Remplacez la limite inférieure pour dans .
Étape 2.3
Annulez le facteur commun de .
Étape 2.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2
Annulez le facteur commun.
Étape 2.3.3
Réécrivez l’expression.
Étape 2.4
Remplacez la limite supérieure pour dans .
Étape 2.5
Annulez le facteur commun de .
Étape 2.5.1
Factorisez à partir de .
Étape 2.5.2
Annulez le facteur commun.
Étape 2.5.3
Réécrivez l’expression.
Étape 2.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 2.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 3
Associez et .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
L’intégrale de par rapport à est .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
L’intégrale de par rapport à est .
Étape 8
Étape 8.1
Évaluez sur et sur .
Étape 8.2
Évaluez sur et sur .
Étape 8.3
Supprimez les parenthèses.
Étape 9
Étape 9.1
La valeur exacte de est .
Étape 9.2
La valeur exacte de est .
Étape 10
Étape 10.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 10.2
La valeur exacte de est .
Étape 10.3
Multipliez par .
Étape 10.4
Additionnez et .
Étape 10.5
Multipliez .
Étape 10.5.1
Multipliez par .
Étape 10.5.2
Multipliez par .
Étape 10.6
Simplifiez chaque terme.
Étape 10.6.1
Ajoutez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 10.6.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 10.6.3
La valeur exacte de est .
Étape 10.7
Additionnez et .
Étape 10.8
Multipliez .
Étape 10.8.1
Multipliez par .
Étape 10.8.2
Multipliez par .
Étape 10.9
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 10.10
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 10.10.1
Multipliez par .
Étape 10.10.2
Multipliez par .
Étape 10.11
Associez les numérateurs sur le dénominateur commun.
Étape 10.12
Réorganisez les facteurs de .
Étape 10.13
Additionnez et .
Étape 11
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :