Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2
Étape 2.1
Laissez . Déterminez .
Étape 2.1.1
Différenciez .
Étape 2.1.2
Différenciez.
Étape 2.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.3.2.2
La dérivée de par rapport à est .
Étape 2.1.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.5
Multipliez par .
Étape 2.1.3.6
Multipliez par .
Étape 2.1.3.7
Multipliez par .
Étape 2.1.4
Additionnez et .
Étape 2.2
Remplacez la limite inférieure pour dans .
Étape 2.3
Simplifiez
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Multipliez par .
Étape 2.3.1.2
La valeur exacte de est .
Étape 2.3.1.3
Multipliez par .
Étape 2.3.2
Soustrayez de .
Étape 2.4
Remplacez la limite supérieure pour dans .
Étape 2.5
Simplifiez
Étape 2.5.1
Simplifiez chaque terme.
Étape 2.5.1.1
Annulez le facteur commun de .
Étape 2.5.1.1.1
Annulez le facteur commun.
Étape 2.5.1.1.2
Réécrivez l’expression.
Étape 2.5.1.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 2.5.1.3
La valeur exacte de est .
Étape 2.5.1.4
Multipliez .
Étape 2.5.1.4.1
Multipliez par .
Étape 2.5.1.4.2
Multipliez par .
Étape 2.5.2
Additionnez et .
Étape 2.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 2.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 3
Étape 3.1
Multipliez par .
Étape 3.2
Déplacez à gauche de .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Étape 5.1
Associez et .
Étape 5.2
Annulez le facteur commun de .
Étape 5.2.1
Annulez le facteur commun.
Étape 5.2.2
Réécrivez l’expression.
Étape 5.3
Multipliez par .
Étape 6
L’intégrale de par rapport à est .
Étape 7
Évaluez sur et sur .
Étape 8
Utilisez la propriété du quotient des logarithmes, .
Étape 9
Étape 9.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 9.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 10
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :