Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de -3 à 4 de 3e^x-4 par rapport à x
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
L’intégrale de par rapport à est .
Étape 4
Appliquez la règle de la constante.
Étape 5
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez sur et sur .
Étape 5.2
Évaluez sur et sur .
Étape 5.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Multipliez par .
Étape 5.3.2
Multipliez par .
Étape 5.3.3
Soustrayez de .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Appliquez la propriété distributive.
Étape 6.1.2
Multipliez par .
Étape 6.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.2
Associez et .
Étape 6.2.3
Placez le signe moins devant la fraction.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 8