Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de racine carrée de x^4-2x^3+x^2 par rapport à x
Étape 1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Multipliez par .
Étape 1.1.4
Factorisez à partir de .
Étape 1.1.5
Factorisez à partir de .
Étape 1.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez comme .
Étape 1.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 1.2.3
Réécrivez le polynôme.
Étape 1.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 1.3
Réécrivez comme .
Étape 1.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.5
Appliquez la propriété distributive.
Étape 1.6
Multipliez par .
Étape 1.7
Déplacez à gauche de .
Étape 1.8
Réécrivez comme .
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6
Simplifiez