Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=1/6*(9x+9)^3
Étape 1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Associez et .
Étape 3.2.2
Déplacez à gauche de .
Étape 3.2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Factorisez à partir de .
Étape 3.2.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.2.1
Factorisez à partir de .
Étape 3.2.3.2.2
Annulez le facteur commun.
Étape 3.2.3.2.3
Réécrivez l’expression.
Étape 3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Multipliez par .
Étape 3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1
Additionnez et .
Étape 3.8.2
Associez et .
Étape 3.8.3
Déplacez à gauche de .
Étape 4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la propriété distributive.
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.2.3
Appliquez la propriété distributive.
Étape 4.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.2.1
Déplacez .
Étape 4.3.1.2.2
Multipliez par .
Étape 4.3.1.3
Multipliez par .
Étape 4.3.1.4
Multipliez par .
Étape 4.3.1.5
Multipliez par .
Étape 4.3.1.6
Multipliez par .
Étape 4.3.2
Additionnez et .
Étape 4.4
Appliquez la propriété distributive.
Étape 4.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Multipliez par .
Étape 4.5.3
Multipliez par .