Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de (x+3)(x-1)^5 par rapport à x
Étape 1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Additionnez et .
Étape 3
Multipliez .
Étape 4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2
Additionnez et .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez
Étape 9.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Associez et .
Étape 9.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1
Factorisez à partir de .
Étape 9.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.2.1
Factorisez à partir de .
Étape 9.2.2.2.2
Annulez le facteur commun.
Étape 9.2.2.2.3
Réécrivez l’expression.
Étape 10
Remplacez toutes les occurrences de par .