Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Différenciez en utilisant la règle multiple constante.
Étape 3.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.2
Réécrivez comme .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez en utilisant la règle de la somme.
Étape 3.3.1
Multipliez par .
Étape 3.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.4
La dérivée de par rapport à est .
Étape 3.5
La dérivée de par rapport à est .
Étape 3.6
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.7
Simplifiez
Étape 3.7.1
Associez des termes.
Étape 3.7.1.1
Associez et .
Étape 3.7.1.2
Placez le signe moins devant la fraction.
Étape 3.7.2
Réorganisez les facteurs de .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.