Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.3.1.1
Laissez . Déterminez .
Étape 2.3.1.1.1
Différenciez .
Étape 2.3.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.1.1.3
Évaluez .
Étape 2.3.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.1.1.3.3
Multipliez par .
Étape 2.3.1.1.4
Différenciez en utilisant la règle de la constante.
Étape 2.3.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.4.2
Additionnez et .
Étape 2.3.1.2
Réécrivez le problème en utilisant et .
Étape 2.3.2
Associez et .
Étape 2.3.3
Simplifiez
Étape 2.3.3.1
Appliquez la propriété distributive.
Étape 2.3.3.2
Multipliez par .
Étape 2.3.3.3
Élevez à la puissance .
Étape 2.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.3.5
Additionnez et .
Étape 2.3.3.6
Multipliez par .
Étape 2.3.3.7
Multipliez par .
Étape 2.3.3.8
Multipliez par .
Étape 2.3.4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.9
Simplifiez
Étape 2.3.9.1
Simplifiez
Étape 2.3.9.2
Simplifiez
Étape 2.3.9.2.1
Multipliez par .
Étape 2.3.9.2.2
Multipliez par .
Étape 2.3.9.2.3
Multipliez par .
Étape 2.3.9.2.4
Multipliez par .
Étape 2.3.10
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .