Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dt)=e^(2t)-2y , y(1)=2
,
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2
Additionnez et .
Étape 3.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.1
Différenciez .
Étape 7.1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.1.1.4
Multipliez par .
Étape 7.1.2
Réécrivez le problème en utilisant et .
Étape 7.2
Associez et .
Étape 7.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.4
L’intégrale de par rapport à est .
Étape 7.5
Simplifiez
Étape 7.6
Remplacez toutes les occurrences de par .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1.1
Factorisez à partir de .
Étape 8.3.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1.2.1
Multipliez par .
Étape 8.3.1.1.2.2
Annulez le facteur commun.
Étape 8.3.1.1.2.3
Réécrivez l’expression.
Étape 8.3.1.1.2.4
Divisez par .
Étape 8.3.1.2
Associez et .
Étape 9
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 10
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Réécrivez l’équation comme .
Étape 10.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Multipliez par .
Étape 10.2.2
Multipliez par .
Étape 10.3
Soustrayez des deux côtés de l’équation.
Étape 10.4
Multipliez les deux côtés de l’équation par .
Étape 10.5
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.5.1.1.1
Annulez le facteur commun.
Étape 10.5.1.1.2
Réécrivez l’expression.
Étape 10.5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1.1
Appliquez la propriété distributive.
Étape 10.5.2.1.2
Déplacez à gauche de .
Étape 10.5.2.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1.3.1
Associez et .
Étape 10.5.2.1.3.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1.3.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 10.5.2.1.3.2.2
Additionnez et .
Étape 11
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez par .
Étape 11.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 11.2.1.2
Associez et .
Étape 11.2.1.3
Associez les numérateurs sur le dénominateur commun.
Étape 11.2.1.4
Multipliez par .
Étape 11.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 11.2.3
Multipliez par .
Étape 11.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 11.4
Multipliez par .
Étape 11.5
Associez les numérateurs sur le dénominateur commun.
Étape 11.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 11.6.1
Utilisez la règle de puissance pour associer des exposants.
Étape 11.6.2
Additionnez et .