Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Factorisez à partir de .
Étape 1.3
Remettez dans l’ordre et .
Étape 2
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.2.2.1
Laissez . Déterminez .
Étape 2.2.2.1.1
Différenciez .
Étape 2.2.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.1.4
Multipliez par .
Étape 2.2.2.2
Réécrivez le problème en utilisant et .
Étape 2.2.3
Associez et .
Étape 2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.5
Simplifiez
Étape 2.2.5.1
Associez et .
Étape 2.2.5.2
Annulez le facteur commun de .
Étape 2.2.5.2.1
Annulez le facteur commun.
Étape 2.2.5.2.2
Réécrivez l’expression.
Étape 2.2.5.3
Multipliez par .
Étape 2.2.6
L’intégrale de par rapport à est .
Étape 2.2.7
Remplacez toutes les occurrences de par .
Étape 2.3
Retirez la constante d’intégration.
Étape 2.4
L’élévation à une puissance et log sont des fonctions inverses.
Étape 3
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Réécrivez en termes de sinus et de cosinus, puis annulez les facteurs communs.
Étape 3.2.1
Déplacez les parenthèses.
Étape 3.2.2
Remettez dans l’ordre et .
Étape 3.2.3
Ajoutez des parenthèses.
Étape 3.2.4
Réécrivez en termes de sinus et de cosinus.
Étape 3.2.5
Annulez les facteurs communs.
Étape 3.3
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Étape 7.1
Intégrez par parties en utilisant la formule , où et .
Étape 7.2
Simplifiez
Étape 7.2.1
Associez et .
Étape 7.2.2
Associez et .
Étape 7.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.4
Simplifiez
Étape 7.4.1
Multipliez par .
Étape 7.4.2
Multipliez par .
Étape 7.5
Laissez . Alors , donc . Réécrivez avec et .
Étape 7.5.1
Laissez . Déterminez .
Étape 7.5.1.1
Différenciez .
Étape 7.5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.5.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 7.5.1.4
Multipliez par .
Étape 7.5.2
Réécrivez le problème en utilisant et .
Étape 7.6
Associez et .
Étape 7.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.8
Simplifiez
Étape 7.8.1
Multipliez par .
Étape 7.8.2
Multipliez par .
Étape 7.9
L’intégrale de par rapport à est .
Étape 7.10
Simplifiez
Étape 7.10.1
Réécrivez comme .
Étape 7.10.2
Simplifiez
Étape 7.10.2.1
Associez et .
Étape 7.10.2.2
Associez et .
Étape 7.11
Remplacez toutes les occurrences de par .
Étape 7.12
Remettez les facteurs dans l’ordre dans .
Étape 8
Étape 8.1
Simplifiez
Étape 8.1.1
Associez et .
Étape 8.1.2
Associez et .
Étape 8.2
Divisez chaque terme dans par et simplifiez.
Étape 8.2.1
Divisez chaque terme dans par .
Étape 8.2.2
Simplifiez le côté gauche.
Étape 8.2.2.1
Annulez le facteur commun de .
Étape 8.2.2.1.1
Annulez le facteur commun.
Étape 8.2.2.1.2
Divisez par .
Étape 8.2.3
Simplifiez le côté droit.
Étape 8.2.3.1
Simplifiez chaque terme.
Étape 8.2.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.2.3.1.2
Convertissez de à .
Étape 8.2.3.1.3
Associez et .
Étape 8.2.3.1.4
Annulez le facteur commun de .
Étape 8.2.3.1.4.1
Annulez le facteur commun.
Étape 8.2.3.1.4.2
Divisez par .
Étape 8.2.3.1.5
Séparez les fractions.
Étape 8.2.3.1.6
Convertissez de à .
Étape 8.2.3.1.7
Divisez par .
Étape 8.2.3.2
Remettez les facteurs dans l’ordre dans .