Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Résolvez .
Étape 1.1.1
Simplifiez chaque terme.
Étape 1.1.1.1
Appliquez la propriété distributive.
Étape 1.1.1.2
Multipliez par .
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.3.1
Factorisez à partir de .
Étape 1.1.3.2
Factorisez à partir de .
Étape 1.1.3.3
Factorisez à partir de .
Étape 1.1.4
Divisez chaque terme dans par et simplifiez.
Étape 1.1.4.1
Divisez chaque terme dans par .
Étape 1.1.4.2
Simplifiez le côté gauche.
Étape 1.1.4.2.1
Annulez le facteur commun de .
Étape 1.1.4.2.1.1
Annulez le facteur commun.
Étape 1.1.4.2.1.2
Divisez par .
Étape 1.1.4.3
Simplifiez le côté droit.
Étape 1.1.4.3.1
Placez le signe moins devant la fraction.
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Étape 1.4.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.2
Annulez le facteur commun de .
Étape 1.4.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 1.4.2.2
Factorisez à partir de .
Étape 1.4.2.3
Annulez le facteur commun.
Étape 1.4.2.4
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Multipliez par .
Étape 2.3.4
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.3.4.1
Laissez . Déterminez .
Étape 2.3.4.1.1
Différenciez .
Étape 2.3.4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.4.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.4.1.5
Additionnez et .
Étape 2.3.4.2
Réécrivez le problème en utilisant et .
Étape 2.3.5
Simplifiez
Étape 2.3.5.1
Multipliez par .
Étape 2.3.5.2
Déplacez à gauche de .
Étape 2.3.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.7
Simplifiez
Étape 2.3.7.1
Associez et .
Étape 2.3.7.2
Annulez le facteur commun à et .
Étape 2.3.7.2.1
Factorisez à partir de .
Étape 2.3.7.2.2
Annulez les facteurs communs.
Étape 2.3.7.2.2.1
Factorisez à partir de .
Étape 2.3.7.2.2.2
Annulez le facteur commun.
Étape 2.3.7.2.2.3
Réécrivez l’expression.
Étape 2.3.7.2.2.4
Divisez par .
Étape 2.3.8
L’intégrale de par rapport à est .
Étape 2.3.9
Simplifiez
Étape 2.3.10
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.2
Utilisez la propriété du produit des logarithmes, .
Étape 3.3
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 3.4
Appliquez la propriété distributive.
Étape 3.5
Multipliez par .
Étape 3.6
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.7
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.8
Résolvez .
Étape 3.8.1
Réécrivez l’équation comme .
Étape 3.8.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.8.3
Factorisez à partir de .
Étape 3.8.3.1
Factorisez à partir de .
Étape 3.8.3.2
Factorisez à partir de .
Étape 3.8.3.3
Factorisez à partir de .
Étape 3.8.4
Divisez chaque terme dans par et simplifiez.
Étape 3.8.4.1
Divisez chaque terme dans par .
Étape 3.8.4.2
Simplifiez le côté gauche.
Étape 3.8.4.2.1
Annulez le facteur commun de .
Étape 3.8.4.2.1.1
Annulez le facteur commun.
Étape 3.8.4.2.1.2
Divisez par .
Étape 4
Simplifiez la constante d’intégration.
Étape 5
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Multipliez les deux côtés de l’équation par .
Étape 6.3
Simplifiez les deux côtés de l’équation.
Étape 6.3.1
Simplifiez le côté gauche.
Étape 6.3.1.1
Simplifiez .
Étape 6.3.1.1.1
Simplifiez le dénominateur.
Étape 6.3.1.1.1.1
L’élévation de à toute puissance positive produit .
Étape 6.3.1.1.1.2
Additionnez et .
Étape 6.3.1.1.2
Simplifiez l’expression.
Étape 6.3.1.1.2.1
L’élévation de à toute puissance positive produit .
Étape 6.3.1.1.2.2
Additionnez et .
Étape 6.3.1.1.2.3
Multipliez par .
Étape 6.3.1.1.2.4
Divisez par .
Étape 6.3.2
Simplifiez le côté droit.
Étape 6.3.2.1
Simplifiez .
Étape 6.3.2.1.1
L’élévation de à toute puissance positive produit .
Étape 6.3.2.1.2
Additionnez et .
Étape 6.3.2.1.3
Multipliez par .
Étape 7
Étape 7.1
Remplacez par .