Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de 0 à 5 de 1/( racine carrée de 9+4x^2) par rapport à x
Étape 1
Laissez , où . Puis . Depuis , est positif.
Étape 2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Associez et .
Étape 2.1.1.2
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.1
Appliquez la règle de produit à .
Étape 2.1.1.2.2
Appliquez la règle de produit à .
Étape 2.1.1.3
Élevez à la puissance .
Étape 2.1.1.4
Élevez à la puissance .
Étape 2.1.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.5.1
Annulez le facteur commun.
Étape 2.1.1.5.2
Réécrivez l’expression.
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Réorganisez les termes.
Étape 2.1.6
Appliquez l’identité pythagoricienne.
Étape 2.1.7
Réécrivez comme .
Étape 2.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Multipliez par .
Étape 2.2.2
Multipliez par .
Étape 2.2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Factorisez à partir de .
Étape 2.2.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Factorisez à partir de .
Étape 2.2.3.2.2
Annulez le facteur commun.
Étape 2.2.3.2.3
Réécrivez l’expression.
Étape 2.2.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Factorisez à partir de .
Étape 2.2.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.2.1
Factorisez à partir de .
Étape 2.2.4.2.2
Annulez le facteur commun.
Étape 2.2.4.2.3
Réécrivez l’expression.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Évaluez sur et sur .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
La valeur exacte de est .
Étape 6.2
La valeur exacte de est .
Étape 6.3
Additionnez et .
Étape 6.4
Utilisez la propriété du quotient des logarithmes, .
Étape 6.5
Associez et .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
est d’environ qui est positif, alors retirez la valeur absolue
Étape 7.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.3
Divisez par .
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 9