Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.2
Différenciez.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Simplifiez l’expression.
Étape 1.2.6.1
Additionnez et .
Étape 1.2.6.2
Déplacez à gauche de .
Étape 1.2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.10
Multipliez par .
Étape 1.2.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.12
Simplifiez l’expression.
Étape 1.2.12.1
Additionnez et .
Étape 1.2.12.2
Déplacez à gauche de .
Étape 1.3
Simplifiez
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.3.4
Associez des termes.
Étape 1.3.4.1
Multipliez par .
Étape 1.3.4.2
Multipliez par .
Étape 1.3.4.3
Multipliez par .
Étape 1.3.4.4
Élevez à la puissance .
Étape 1.3.4.5
Élevez à la puissance .
Étape 1.3.4.6
Utilisez la règle de puissance pour associer des exposants.
Étape 1.3.4.7
Additionnez et .
Étape 1.3.4.8
Multipliez par .
Étape 1.3.4.9
Additionnez et .
Étape 1.3.5
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .