Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La dérivée de par rapport à est .
Étape 2
Étape 2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Multipliez par en additionnant les exposants.
Étape 2.3.1
Multipliez par .
Étape 2.3.1.1
Élevez à la puissance .
Étape 2.3.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.2
Additionnez et .
Étape 2.4
La dérivée de par rapport à est .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Élevez à la puissance .
Étape 2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.8
Additionnez et .
Étape 2.9
Remettez les termes dans l’ordre.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
La plage de la sécante est et . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Étape 6.2.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 6.2.2
Simplifiez le côté droit.
Étape 6.2.2.1
La valeur exacte de est .
Étape 6.2.3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6.2.4
Additionnez et .
Étape 6.2.5
La solution de l’équation est .
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
La valeur exacte de est .
Étape 9.1.2
L’élévation de à toute puissance positive produit .
Étape 9.1.3
La valeur exacte de est .
Étape 9.1.4
Multipliez par .
Étape 9.1.5
La valeur exacte de est .
Étape 9.1.6
Un à n’importe quelle puissance est égal à un.
Étape 9.2
Additionnez et .
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
La valeur exacte de est .
Étape 11.2.2
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Étape 13.1
Simplifiez chaque terme.
Étape 13.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la tangente est négative dans le deuxième quadrant.
Étape 13.1.2
La valeur exacte de est .
Étape 13.1.3
Multipliez par .
Étape 13.1.4
L’élévation de à toute puissance positive produit .
Étape 13.1.5
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la sécante est négative dans le deuxième quadrant.
Étape 13.1.6
La valeur exacte de est .
Étape 13.1.7
Multipliez .
Étape 13.1.7.1
Multipliez par .
Étape 13.1.7.2
Multipliez par .
Étape 13.1.8
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la sécante est négative dans le deuxième quadrant.
Étape 13.1.9
La valeur exacte de est .
Étape 13.1.10
Multipliez par .
Étape 13.1.11
Élevez à la puissance .
Étape 13.2
Soustrayez de .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Étape 15.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la sécante est négative dans le deuxième quadrant.
Étape 15.2.2
La valeur exacte de est .
Étape 15.2.3
Multipliez par .
Étape 15.2.4
La réponse finale est .
Étape 16
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 17