Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de infinity de (x^3)/(9e^(x/5))
Étape 1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 2.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 2.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 2.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 2.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Différenciez le numérateur et le dénominateur.
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5
Associez et .
Étape 2.3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.7
Multipliez par .
Étape 2.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.5
Combinez les facteurs.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Associez et .
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Associez et .
Étape 3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 4
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 4.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 4.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 4.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 4.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 4.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Différenciez le numérateur et le dénominateur.
Étape 4.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.5
Associez et .
Étape 4.3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.7
Multipliez par .
Étape 4.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.5
Combinez les facteurs.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Associez et .
Étape 4.5.2
Multipliez par .
Étape 4.5.3
Associez et .
Étape 5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 6
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 6.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 6.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 6.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 6.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 6.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Différenciez le numérateur et le dénominateur.
Étape 6.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 6.3.3.3
Remplacez toutes les occurrences de par .
Étape 6.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.3.5
Associez et .
Étape 6.3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.3.7
Multipliez par .
Étape 6.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.5
Multipliez par .
Étape 7
Placez le terme hors de la limite car il est constant par rapport à .
Étape 8
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 9
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Factorisez à partir de .
Étape 9.1.2
Factorisez à partir de .
Étape 9.1.3
Annulez le facteur commun.
Étape 9.1.4
Réécrivez l’expression.
Étape 9.2
Associez et .
Étape 9.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Associez et .
Étape 9.3.2
Multipliez par .
Étape 9.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 9.4.1
Associez et .
Étape 9.4.2
Multipliez par .
Étape 9.5
Multipliez par .