Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez l’expression.
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Multipliez par .
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez le numérateur.
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Remettez les facteurs dans l’ordre dans .
Étape 4.3
Remettez les termes dans l’ordre.
Étape 4.4
Simplifiez le numérateur.
Étape 4.4.1
Factorisez par regroupement.
Étape 4.4.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 4.4.1.1.1
Factorisez à partir de .
Étape 4.4.1.1.2
Réécrivez comme plus
Étape 4.4.1.1.3
Appliquez la propriété distributive.
Étape 4.4.1.1.4
Déplacez les parenthèses.
Étape 4.4.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.4.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.4.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.4.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4.4.2
Factorisez à partir de .
Étape 4.4.2.1
Factorisez à partir de .
Étape 4.4.2.2
Factorisez à partir de .
Étape 4.4.2.3
Factorisez à partir de .
Étape 4.4.3
Associez les exposants.
Étape 4.4.3.1
Élevez à la puissance .
Étape 4.4.3.2
Élevez à la puissance .
Étape 4.4.3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 4.4.3.4
Additionnez et .
Étape 4.5
Remettez les facteurs dans l’ordre dans .