Calcul infinitésimal Exemples

Évaluer l''intégrale intégrale de 0 à a de 1/((1+x)^2) par rapport à x=1/5
Étape 1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.5
Additionnez et .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Additionnez et .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.6
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2
Multipliez par .
Étape 3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur et sur .
Étape 4.2
Un à n’importe quelle puissance est égal à un.
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 5.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 5.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Additionnez et .
Étape 5.4.2
Additionnez et .