Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en ajoutant des zéros.
Étape 1.3
Développez à l’aide de la méthode FOIL.
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.4
Simplifiez et associez les termes similaires.
Étape 1.4.1
Simplifiez chaque terme.
Étape 1.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.1.2
Multipliez par en additionnant les exposants.
Étape 1.4.1.2.1
Déplacez .
Étape 1.4.1.2.2
Multipliez par .
Étape 1.4.1.3
Multipliez par .
Étape 1.4.1.4
Multipliez par .
Étape 1.4.1.5
Multipliez par .
Étape 1.4.1.6
Multipliez par .
Étape 1.4.2
Soustrayez de .
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Associez les termes opposés dans .
Étape 2.2.1
Soustrayez de .
Étape 2.2.2
Additionnez et .
Étape 3
Étape 3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2
Additionnez et .
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Divisez par .
Étape 5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.