Algèbre Exemples

Resolva a Inequação para x (x^2+x-12)/(x^2-4x+4)>0
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez comme .
Étape 7.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 7.3
Réécrivez le polynôme.
Étape 7.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 8
Définissez le égal à .
Étape 9
Ajoutez aux deux côtés de l’équation.
Étape 10
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 11
Consolidez les solutions.
Étape 12
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 12.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Réécrivez comme .
Étape 12.2.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 12.2.1.3
Réécrivez le polynôme.
Étape 12.2.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 12.2.2
Définissez le égal à .
Étape 12.2.3
Ajoutez aux deux côtés de l’équation.
Étape 12.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 13
Utilisez chaque racine pour créer des intervalles de test.
Étape 14
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.1.2
Remplacez par dans l’inégalité d’origine.
Étape 14.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 14.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.2.2
Remplacez par dans l’inégalité d’origine.
Étape 14.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 14.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.3.2
Remplacez par dans l’inégalité d’origine.
Étape 14.3.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 14.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 14.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 14.4.2
Remplacez par dans l’inégalité d’origine.
Étape 14.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 14.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Faux
Vrai
Vrai
Faux
Faux
Vrai
Étape 15
La solution se compose de tous les intervalles vrais.
ou
Étape 16
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 17