Algèbre Exemples

Resolva para y (y-6)/-5=-2/(y-9)
Étape 1
Simplifiez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Placez le signe moins devant la fraction.
Étape 1.2
Placez le signe moins devant la fraction.
Étape 2
Multipliez le numérateur de la première fraction par le dénominateur de la deuxième fraction. Définissez une valeur égale au produit du dénominateur de la première fraction et du numérateur de la deuxième fraction.
Étape 3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.1.2
Divisez par .
Étape 3.1.2.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.2.1
Appliquez la propriété distributive.
Étape 3.1.2.2.2
Appliquez la propriété distributive.
Étape 3.1.2.2.3
Appliquez la propriété distributive.
Étape 3.1.2.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.3.1.1
Multipliez par .
Étape 3.1.2.3.1.2
Déplacez à gauche de .
Étape 3.1.2.3.1.3
Multipliez par .
Étape 3.1.2.3.2
Soustrayez de .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Déplacez le moins un du dénominateur de .
Étape 3.1.3.2
Réécrivez comme .
Étape 3.1.3.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.3.1
Multipliez par .
Étape 3.1.3.3.2
Multipliez par .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Soustrayez de .
Étape 3.4
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Définissez égal à .
Étape 3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 3.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Définissez égal à .
Étape 3.7.2
Ajoutez aux deux côtés de l’équation.
Étape 3.8
La solution finale est l’ensemble des valeurs qui rendent vraie.