Entrer un problème...
Algèbre Exemples
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.2.1.2
Divisez par .
Étape 2.2.2.3
Simplifiez le côté droit.
Étape 2.2.2.3.1
Placez le signe moins devant la fraction.
Étape 3
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.2.1
Divisez chaque terme dans par .
Étape 3.2.2.2
Simplifiez le côté gauche.
Étape 3.2.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.2.1.2
Divisez par .
Étape 3.2.2.3
Simplifiez le côté droit.
Étape 3.2.2.3.1
Placez le signe moins devant la fraction.
Étape 3.2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.4
Simplifiez .
Étape 3.2.4.1
Réécrivez comme .
Étape 3.2.4.1.1
Réécrivez comme .
Étape 3.2.4.1.2
Réécrivez comme .
Étape 3.2.4.2
Extrayez les termes de sous le radical.
Étape 3.2.4.3
Un à n’importe quelle puissance est égal à un.
Étape 3.2.4.4
Réécrivez comme .
Étape 3.2.4.5
Toute racine de est .
Étape 3.2.4.6
Multipliez par .
Étape 3.2.4.7
Associez et simplifiez le dénominateur.
Étape 3.2.4.7.1
Multipliez par .
Étape 3.2.4.7.2
Élevez à la puissance .
Étape 3.2.4.7.3
Élevez à la puissance .
Étape 3.2.4.7.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.4.7.5
Additionnez et .
Étape 3.2.4.7.6
Réécrivez comme .
Étape 3.2.4.7.6.1
Utilisez pour réécrire comme .
Étape 3.2.4.7.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.4.7.6.3
Associez et .
Étape 3.2.4.7.6.4
Annulez le facteur commun de .
Étape 3.2.4.7.6.4.1
Annulez le facteur commun.
Étape 3.2.4.7.6.4.2
Réécrivez l’expression.
Étape 3.2.4.7.6.5
Évaluez l’exposant.
Étape 3.2.4.8
Associez et .
Étape 3.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Étape 4.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.2.2.2.2
Divisez par .
Étape 4.2.2.3
Simplifiez le côté droit.
Étape 4.2.2.3.1
Divisez par .
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Utilisez chaque racine pour créer des intervalles de test.
Étape 7
Étape 7.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 7.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.1.2
Remplacez par dans l’inégalité d’origine.
Étape 7.1.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 7.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 7.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.2.2
Remplacez par dans l’inégalité d’origine.
Étape 7.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 7.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 7.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.3.2
Remplacez par dans l’inégalité d’origine.
Étape 7.3.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 7.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 8
La solution se compose de tous les intervalles vrais.
Étape 9
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 10