Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Simplifiez le côté gauche.
Étape 1.1.1
Simplifiez chaque terme.
Étape 1.1.1.1
Divisez la fraction en deux fractions.
Étape 1.1.1.2
Placez le signe moins devant la fraction.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3
Simplifiez .
Étape 1.3.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.2
Associez et .
Étape 1.3.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.4
Simplifiez le numérateur.
Étape 1.3.4.1
Multipliez par .
Étape 1.3.4.2
Soustrayez de .
Étape 1.3.5
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
a des facteurs de et .
Étape 2.6
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.8
Multipliez par .
Étape 2.9
Le facteur pour est lui-même.
se produit fois.
Étape 2.10
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.11
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.2
Multipliez .
Étape 3.2.1.2.1
Associez et .
Étape 3.2.1.2.2
Multipliez par .
Étape 3.2.1.3
Annulez le facteur commun de .
Étape 3.2.1.3.1
Annulez le facteur commun.
Étape 3.2.1.3.2
Réécrivez l’expression.
Étape 3.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.5
Annulez le facteur commun de .
Étape 3.2.1.5.1
Annulez le facteur commun.
Étape 3.2.1.5.2
Réécrivez l’expression.
Étape 3.2.1.6
Multipliez par .
Étape 3.2.1.7
Annulez le facteur commun de .
Étape 3.2.1.7.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.7.2
Factorisez à partir de .
Étape 3.2.1.7.3
Annulez le facteur commun.
Étape 3.2.1.7.4
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez .
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Multipliez par .
Étape 4
Étape 4.1
Factorisez à l’aide de la méthode AC.
Étape 4.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.4
Définissez égal à et résolvez .
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.5
La solution finale est l’ensemble des valeurs qui rendent vraie.