Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Remettez les termes dans l’ordre.
Étape 1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.5
Annulez le facteur commun de .
Étape 1.5.1
Annulez le facteur commun.
Étape 1.5.2
Réécrivez l’expression.
Étape 1.6
Annulez le facteur commun de .
Étape 1.6.1
Annulez le facteur commun.
Étape 1.6.2
Réécrivez l’expression.
Étape 1.7
Annulez le facteur commun de .
Étape 1.7.1
Annulez le facteur commun.
Étape 1.7.2
Divisez par .
Étape 1.8
Simplifiez chaque terme.
Étape 1.8.1
Annulez le facteur commun de .
Étape 1.8.1.1
Annulez le facteur commun.
Étape 1.8.1.2
Divisez par .
Étape 1.8.2
Développez à l’aide de la méthode FOIL.
Étape 1.8.2.1
Appliquez la propriété distributive.
Étape 1.8.2.2
Appliquez la propriété distributive.
Étape 1.8.2.3
Appliquez la propriété distributive.
Étape 1.8.3
Simplifiez et associez les termes similaires.
Étape 1.8.3.1
Simplifiez chaque terme.
Étape 1.8.3.1.1
Multipliez par en additionnant les exposants.
Étape 1.8.3.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.8.3.1.1.2
Additionnez et .
Étape 1.8.3.1.2
Déplacez à gauche de .
Étape 1.8.3.1.3
Multipliez par .
Étape 1.8.3.1.4
Multipliez par .
Étape 1.8.3.2
Additionnez et .
Étape 1.8.4
Appliquez la propriété distributive.
Étape 1.8.5
Simplifiez
Étape 1.8.5.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.8.5.2
Déplacez à gauche de .
Étape 1.8.6
Annulez le facteur commun de .
Étape 1.8.6.1
Annulez le facteur commun.
Étape 1.8.6.2
Divisez par .
Étape 1.8.7
Appliquez la propriété distributive.
Étape 1.8.8
Multipliez par en additionnant les exposants.
Étape 1.8.8.1
Multipliez par .
Étape 1.8.8.1.1
Élevez à la puissance .
Étape 1.8.8.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.8.8.2
Additionnez et .
Étape 1.8.9
Déplacez à gauche de .
Étape 1.8.10
Développez à l’aide de la méthode FOIL.
Étape 1.8.10.1
Appliquez la propriété distributive.
Étape 1.8.10.2
Appliquez la propriété distributive.
Étape 1.8.10.3
Appliquez la propriété distributive.
Étape 1.8.11
Simplifiez chaque terme.
Étape 1.8.11.1
Multipliez par en additionnant les exposants.
Étape 1.8.11.1.1
Déplacez .
Étape 1.8.11.1.2
Multipliez par .
Étape 1.8.11.1.2.1
Élevez à la puissance .
Étape 1.8.11.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.8.11.1.3
Additionnez et .
Étape 1.8.11.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.8.11.3
Multipliez par en additionnant les exposants.
Étape 1.8.11.3.1
Déplacez .
Étape 1.8.11.3.2
Multipliez par .
Étape 1.8.11.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.8.12
Annulez le facteur commun de .
Étape 1.8.12.1
Annulez le facteur commun.
Étape 1.8.12.2
Divisez par .
Étape 1.8.13
Appliquez la propriété distributive.
Étape 1.8.14
Multipliez par en additionnant les exposants.
Étape 1.8.14.1
Multipliez par .
Étape 1.8.14.1.1
Élevez à la puissance .
Étape 1.8.14.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.8.14.2
Additionnez et .
Étape 1.8.15
Multipliez par .
Étape 1.8.16
Développez à l’aide de la méthode FOIL.
Étape 1.8.16.1
Appliquez la propriété distributive.
Étape 1.8.16.2
Appliquez la propriété distributive.
Étape 1.8.16.3
Appliquez la propriété distributive.
Étape 1.8.17
Simplifiez chaque terme.
Étape 1.8.17.1
Multipliez par en additionnant les exposants.
Étape 1.8.17.1.1
Déplacez .
Étape 1.8.17.1.2
Multipliez par .
Étape 1.8.17.1.2.1
Élevez à la puissance .
Étape 1.8.17.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.8.17.1.3
Additionnez et .
Étape 1.8.17.2
Multipliez par en additionnant les exposants.
Étape 1.8.17.2.1
Déplacez .
Étape 1.8.17.2.2
Multipliez par .
Étape 1.9
Simplifiez l’expression.
Étape 1.9.1
Déplacez .
Étape 1.9.2
Remettez dans l’ordre et .
Étape 1.9.3
Déplacez .
Étape 1.9.4
Remettez dans l’ordre et .
Étape 1.9.5
Remettez dans l’ordre et .
Étape 1.9.6
Déplacez .
Étape 1.9.7
Déplacez .
Étape 1.9.8
Déplacez .
Étape 1.9.9
Déplacez .
Étape 1.9.10
Déplacez .
Étape 1.9.11
Déplacez .
Étape 2
Étape 2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.4
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.5
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.6
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 3
Étape 3.1
Résolvez dans .
Étape 3.1.1
Réécrivez l’équation comme .
Étape 3.1.2
Divisez chaque terme dans par et simplifiez.
Étape 3.1.2.1
Divisez chaque terme dans par .
Étape 3.1.2.2
Simplifiez le côté gauche.
Étape 3.1.2.2.1
Annulez le facteur commun de .
Étape 3.1.2.2.1.1
Annulez le facteur commun.
Étape 3.1.2.2.1.2
Divisez par .
Étape 3.1.2.3
Simplifiez le côté droit.
Étape 3.1.2.3.1
Divisez par .
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.2.1
Remplacez toutes les occurrences de dans par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Supprimez les parenthèses.
Étape 3.2.3
Remplacez toutes les occurrences de dans par .
Étape 3.2.4
Simplifiez le côté droit.
Étape 3.2.4.1
Multipliez par .
Étape 3.3
Résolvez dans .
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2.3
Additionnez et .
Étape 3.3.2.4
Additionnez et .
Étape 3.4
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.4.1
Remplacez toutes les occurrences de dans par .
Étape 3.4.2
Simplifiez .
Étape 3.4.2.1
Simplifiez le côté gauche.
Étape 3.4.2.1.1
Supprimez les parenthèses.
Étape 3.4.2.2
Simplifiez le côté droit.
Étape 3.4.2.2.1
Additionnez et .
Étape 3.5
Résolvez dans .
Étape 3.5.1
Réécrivez l’équation comme .
Étape 3.5.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.5.2.2
Soustrayez de .
Étape 3.5.3
Divisez chaque terme dans par et simplifiez.
Étape 3.5.3.1
Divisez chaque terme dans par .
Étape 3.5.3.2
Simplifiez le côté gauche.
Étape 3.5.3.2.1
Annulez le facteur commun de .
Étape 3.5.3.2.1.1
Annulez le facteur commun.
Étape 3.5.3.2.1.2
Divisez par .
Étape 3.5.3.3
Simplifiez le côté droit.
Étape 3.5.3.3.1
Divisez par .
Étape 3.6
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.6.1
Remplacez toutes les occurrences de dans par .
Étape 3.6.2
Simplifiez le côté droit.
Étape 3.6.2.1
Multipliez par .
Étape 3.7
Résolvez dans .
Étape 3.7.1
Réécrivez l’équation comme .
Étape 3.7.2
Soustrayez des deux côtés de l’équation.
Étape 3.8
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.8.1
Remplacez toutes les occurrences de dans par .
Étape 3.8.2
Simplifiez le côté droit.
Étape 3.8.2.1
Simplifiez .
Étape 3.8.2.1.1
Simplifiez chaque terme.
Étape 3.8.2.1.1.1
Appliquez la propriété distributive.
Étape 3.8.2.1.1.2
Multipliez par .
Étape 3.8.2.1.1.3
Multipliez par .
Étape 3.8.2.1.2
Additionnez et .
Étape 3.9
Résolvez dans .
Étape 3.9.1
Réécrivez l’équation comme .
Étape 3.9.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.9.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.9.2.2
Additionnez et .
Étape 3.9.3
Divisez chaque terme dans par et simplifiez.
Étape 3.9.3.1
Divisez chaque terme dans par .
Étape 3.9.3.2
Simplifiez le côté gauche.
Étape 3.9.3.2.1
Annulez le facteur commun de .
Étape 3.9.3.2.1.1
Annulez le facteur commun.
Étape 3.9.3.2.1.2
Divisez par .
Étape 3.9.3.3
Simplifiez le côté droit.
Étape 3.9.3.3.1
Divisez par .
Étape 3.10
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.10.1
Remplacez toutes les occurrences de dans par .
Étape 3.10.2
Simplifiez le côté droit.
Étape 3.10.2.1
Simplifiez .
Étape 3.10.2.1.1
Multipliez par .
Étape 3.10.2.1.2
Soustrayez de .
Étape 3.11
Indiquez toutes les solutions.
Étape 4
Replace each of the partial fraction coefficients in with the values found for , , , , and .
Étape 5
Étape 5.1
Multipliez par .
Étape 5.2
Additionnez et .
Étape 5.3
Multipliez par .
Étape 5.4
Additionnez et .