Algèbre Exemples

Evaluer en utilisant la valeur donnée (2x)^2-3y^2+4x=-1 y=2
Étape 1
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Remplacez toutes les occurrences de dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Appliquez la règle de produit à .
Étape 1.2.1.2
Élevez à la puissance .
Étape 1.2.1.3
Élevez à la puissance .
Étape 1.2.1.4
Multipliez par .
Étape 2
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Ajoutez aux deux côtés de l’équation.
Étape 2.1.2
Additionnez et .
Étape 2.2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Élevez à la puissance .
Étape 2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.2.1
Multipliez par .
Étape 2.4.1.2.2
Multipliez par .
Étape 2.4.1.3
Additionnez et .
Étape 2.4.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.4.1
Factorisez à partir de .
Étape 2.4.1.4.2
Réécrivez comme .
Étape 2.4.1.5
Extrayez les termes de sous le radical.
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Simplifiez .
Étape 2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Élevez à la puissance .
Étape 2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.2.1
Multipliez par .
Étape 2.5.1.2.2
Multipliez par .
Étape 2.5.1.3
Additionnez et .
Étape 2.5.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.4.1
Factorisez à partir de .
Étape 2.5.1.4.2
Réécrivez comme .
Étape 2.5.1.5
Extrayez les termes de sous le radical.
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Simplifiez .
Étape 2.5.4
Remplacez le par .
Étape 2.5.5
Réécrivez comme .
Étape 2.5.6
Factorisez à partir de .
Étape 2.5.7
Factorisez à partir de .
Étape 2.5.8
Placez le signe moins devant la fraction.
Étape 2.6
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Additionnez et .
Étape 2.6.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.4.1
Factorisez à partir de .
Étape 2.6.1.4.2
Réécrivez comme .
Étape 2.6.1.5
Extrayez les termes de sous le radical.
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.6.4
Remplacez le par .
Étape 2.6.5
Réécrivez comme .
Étape 2.6.6
Factorisez à partir de .
Étape 2.6.7
Factorisez à partir de .
Étape 2.6.8
Placez le signe moins devant la fraction.
Étape 2.7
La réponse finale est la combinaison des deux solutions.
Étape 3
Résolvez le système d’équations.
Étape 4
Résolvez le système d’équations.
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.