Algèbre Exemples

Encontre os Outros Valores Trigonométricos no Quadrante III sin(x)=-3/5
Étape 1
Utilisez la définition du sinus pour déterminer les côtés connus du triangle rectangle du cercle unité. Le quadrant détermine le signe sur chacune des valeurs.
Étape 2
Déterminez le côté adjacent du triangle du cercle unité. L’hypoténuse et le côté opposé étant connus, utilisez le théorème de Pythagore pour déterminer le côté restant.
Étape 3
Remplacez les valeurs connues dans l’équation.
Étape 4
Simplifiez à l’intérieur du radical.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Inversez .
Adjacent
Étape 4.2
Élevez à la puissance .
Adjacent
Étape 4.3
Élevez à la puissance .
Adjacent
Étape 4.4
Multipliez par .
Adjacent
Étape 4.5
Soustrayez de .
Adjacent
Étape 4.6
Réécrivez comme .
Adjacent
Étape 4.7
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Adjacent
Étape 4.8
Multipliez par .
Adjacent
Adjacent
Étape 5
Placez le signe moins devant la fraction.
Étape 6
Déterminez la valeur du cosinus.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Utilisez la définition du cosinus pour déterminer la valeur de .
Étape 6.2
Remplacez dans les valeurs connues.
Étape 6.3
Placez le signe moins devant la fraction.
Étape 7
Déterminez la valeur de la tangente.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Utilisez la définition de la tangente pour déterminer la valeur de .
Étape 7.2
Remplacez dans les valeurs connues.
Étape 7.3
La division de deux valeurs négatives produit une valeur positive.
Étape 8
Déterminez la valeur de la cotangente.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Utilisez la définition de la cotangente pour déterminer la valeur de .
Étape 8.2
Remplacez dans les valeurs connues.
Étape 8.3
La division de deux valeurs négatives produit une valeur positive.
Étape 9
Déterminez la valeur de la sécante.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Utilisez la définition de la sécante pour déterminer la valeur de .
Étape 9.2
Remplacez dans les valeurs connues.
Étape 9.3
Placez le signe moins devant la fraction.
Étape 10
Déterminez la valeur de la cosécante.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Utilisez la définition de la cosécante pour déterminer la valeur de .
Étape 10.2
Remplacez dans les valeurs connues.
Étape 10.3
Placez le signe moins devant la fraction.
Étape 11
C’est la solution à chaque valeur trigonométrique.