Algèbre Exemples

Prouver qu'une racine est dans l'intervalle 3x^2+4x=y , [0,100]
,
Étape 1
Réécrivez l’équation comme .
Étape 2
Le théorème de la valeur intermédiaire indique que, si est une fonction continue à valeur réelle sur l’intervalle et si est un nombre compris entre et , alors il y a un contenu dans l’intervalle de sorte que .
Étape 3
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
Calculez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
Multipliez par .
Étape 4.2
Additionnez et .
Étape 5
Calculez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez par .
Étape 5.1.3
Multipliez par .
Étape 5.2
Additionnez et .
Étape 6
Comme est sur l’intervalle , résolvez l’équation pour à la racine en définissant sur dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Factorisez à partir de .
Étape 6.2.3
Factorisez à partir de .
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à .
Étape 6.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.1
Divisez chaque terme dans par .
Étape 6.5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.2.1.1
Annulez le facteur commun.
Étape 6.5.2.2.2.1.2
Divisez par .
Étape 6.5.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.3.1
Placez le signe moins devant la fraction.
Étape 6.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Le théorème de la valeur intermédiaire indique qu’il y a une racine sur l’intervalle car est une fonction continue sur .
Les racines sur l’intervalle se situent sur .
Étape 8