Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Factorisez la fraction.
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.3.1
Factorisez à partir de .
Étape 1.1.3.2
Factorisez à partir de .
Étape 1.1.3.3
Élevez à la puissance .
Étape 1.1.3.4
Factorisez à partir de .
Étape 1.1.3.5
Factorisez à partir de .
Étape 1.1.3.6
Factorisez à partir de .
Étape 1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.4
Réduisez l’expression en annulant les facteurs communs.
Étape 1.4.1
Annulez le facteur commun de .
Étape 1.4.1.1
Annulez le facteur commun.
Étape 1.4.1.2
Réécrivez l’expression.
Étape 1.4.2
Annulez le facteur commun de .
Étape 1.4.2.1
Annulez le facteur commun.
Étape 1.4.2.2
Divisez par .
Étape 1.5
Développez à l’aide de la méthode FOIL.
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Appliquez la propriété distributive.
Étape 1.5.3
Appliquez la propriété distributive.
Étape 1.6
Simplifiez et associez les termes similaires.
Étape 1.6.1
Simplifiez chaque terme.
Étape 1.6.1.1
Multipliez par .
Étape 1.6.1.2
Déplacez à gauche de .
Étape 1.6.1.3
Réécrivez comme .
Étape 1.6.1.4
Multipliez par .
Étape 1.6.1.5
Multipliez par .
Étape 1.6.2
Additionnez et .
Étape 1.6.3
Additionnez et .
Étape 1.7
Simplifiez chaque terme.
Étape 1.7.1
Annulez le facteur commun de .
Étape 1.7.1.1
Annulez le facteur commun.
Étape 1.7.1.2
Divisez par .
Étape 1.7.2
Appliquez la propriété distributive.
Étape 1.7.3
Multipliez par .
Étape 1.7.4
Annulez le facteur commun de .
Étape 1.7.4.1
Annulez le facteur commun.
Étape 1.7.4.2
Divisez par .
Étape 1.7.5
Appliquez la propriété distributive.
Étape 1.7.6
Multipliez par en additionnant les exposants.
Étape 1.7.6.1
Déplacez .
Étape 1.7.6.2
Multipliez par .
Étape 1.8
Simplifiez l’expression.
Étape 1.8.1
Remettez dans l’ordre et .
Étape 1.8.2
Déplacez .
Étape 1.8.3
Déplacez .
Étape 2
Étape 2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.4
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.2.1
Remplacez toutes les occurrences de dans par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Supprimez les parenthèses.
Étape 3.2.3
Remplacez toutes les occurrences de dans par .
Étape 3.2.4
Simplifiez le côté droit.
Étape 3.2.4.1
Supprimez les parenthèses.
Étape 3.3
Résolvez dans .
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.4
Remplacez toutes les occurrences de par dans chaque équation.
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.4.2.2
Additionnez et .
Étape 3.5
Indiquez toutes les solutions.
Étape 4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , et .
Étape 5
Multipliez par .