Algèbre Exemples

Trouver la symétrie f(x)=(x-2)/(x-3)
Étape 1
Déterminez si la fonction est impaire, paire ou ni l’un ni l’autre pour déterminer la symétrie.
1. S’il est impair, la fonction est symétrique par rapport à l’origine.
2. S’il est pair, la fonction est symétrique par rapport à l’ordonnée.
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez en remplaçant pour toutes les occurrences de dans .
Étape 2.2
Factorisez à partir de .
Étape 2.3
Réécrivez comme .
Étape 2.4
Factorisez à partir de .
Étape 2.5
Réécrivez comme .
Étape 2.6
Factorisez à partir de .
Étape 2.7
Réécrivez comme .
Étape 2.8
Factorisez à partir de .
Étape 2.9
Réécrivez comme .
Étape 2.10
Annulez le facteur commun.
Étape 2.11
Réécrivez l’expression.
Étape 3
Une fonction est paire si .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Vérifiez si .
Étape 3.2
Comme , la fonction n’est pas paire.
La fonction n’est pas paire
La fonction n’est pas paire
Étape 4
Une fonction est impaire si .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez par .
Étape 4.2
Comme , la fonction n’est pas impaire.
La fonction n’est pas impaire
La fonction n’est pas impaire
Étape 5
La fonction n’est ni paire ni impaire
Étape 6
Comme la fonction n’est pas impaire, elle n’est pas symétrique par rapport à l’origine.
Aucune symétrie par rapport à l’origine
Étape 7
Comme la fonction n’est pas paire, elle n’est pas symétrique par rapport à l’ordonnée.
Aucune symétrie par rapport à l’ordonnée
Étape 8
Comme la fonction n’est ni impaire ni paire, il n’y a pas de symétrique par rapport à l’origine ni par rapport à l’ordonnée.
La fonction n’est pas symétrique
Étape 9