Algèbre Exemples

Déterminer la concavité logarithme népérien de x^4+27
Étape 1
Écrivez comme une fonction.
Étape 2
Find the values where the second derivative is equal to .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.1.1.2
La dérivée de par rapport à est .
Étape 2.1.1.1.3
Remplacez toutes les occurrences de par .
Étape 2.1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.1.2.4
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.2.4.1
Additionnez et .
Étape 2.1.1.2.4.2
Associez et .
Étape 2.1.1.2.4.3
Associez et .
Étape 2.1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.1.2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3.2
Déplacez à gauche de .
Étape 2.1.2.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.6.1
Additionnez et .
Étape 2.1.2.3.6.2
Multipliez par .
Étape 2.1.2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.4.1
Déplacez .
Étape 2.1.2.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.4.3
Additionnez et .
Étape 2.1.2.5
Associez et .
Étape 2.1.2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.6.1
Appliquez la propriété distributive.
Étape 2.1.2.6.2
Appliquez la propriété distributive.
Étape 2.1.2.6.3
Appliquez la propriété distributive.
Étape 2.1.2.6.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.6.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.6.4.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.6.4.1.1.1
Déplacez .
Étape 2.1.2.6.4.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.2.6.4.1.1.3
Additionnez et .
Étape 2.1.2.6.4.1.2
Multipliez par .
Étape 2.1.2.6.4.1.3
Multipliez par .
Étape 2.1.2.6.4.1.4
Multipliez par .
Étape 2.1.2.6.4.1.5
Multipliez par .
Étape 2.1.2.6.4.2
Soustrayez de .
Étape 2.1.3
La dérivée seconde de par rapport à est .
Étape 2.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Définissez la dérivée seconde égale à .
Étape 2.2.2
Définissez le numérateur égal à zéro.
Étape 2.2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1.1
Factorisez à partir de .
Étape 2.2.3.1.1.2
Factorisez à partir de .
Étape 2.2.3.1.1.3
Factorisez à partir de .
Étape 2.2.3.1.2
Réécrivez comme .
Étape 2.2.3.1.3
Réécrivez comme .
Étape 2.2.3.1.4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.2.3.1.5
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.5.1.1
Réécrivez comme .
Étape 2.2.3.1.5.1.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.5.1.2.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.2.3.1.5.1.2.2
Supprimez les parenthèses inutiles.
Étape 2.2.3.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.2.3.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.1
Définissez égal à .
Étape 2.2.3.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3.3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.2.2.1
Réécrivez comme .
Étape 2.2.3.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.3.3.2.2.3
Plus ou moins est .
Étape 2.2.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.4.1
Définissez égal à .
Étape 2.2.3.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.3.4.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3.4.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.4.2.3.1
Réécrivez comme .
Étape 2.2.3.4.2.3.2
Réécrivez comme .
Étape 2.2.3.4.2.3.3
Réécrivez comme .
Étape 2.2.3.4.2.3.4
Réécrivez comme .
Étape 2.2.3.4.2.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.3.4.2.3.6
Déplacez à gauche de .
Étape 2.2.3.4.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.4.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.3.4.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.3.4.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.2.3.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.5.1
Définissez égal à .
Étape 2.2.3.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.2.3.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.6.1
Définissez égal à .
Étape 2.2.3.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.2.3.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.2.2
Comme le côté gauche a une puissance paire, il est toujours positif pour tous les nombres réels.
Tous les nombres réels
Tous les nombres réels
Étape 3.3
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 5
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Élevez à la puissance .
Étape 5.2.1.4
Multipliez par .
Étape 5.2.1.5
Additionnez et .
Étape 5.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1.1
Factorisez à partir de .
Étape 5.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1.2.1
Factorisez à partir de .
Étape 5.2.3.1.2.2
Annulez le facteur commun.
Étape 5.2.3.1.2.3
Réécrivez l’expression.
Étape 5.2.3.2
Placez le signe moins devant la fraction.
Étape 5.2.4
La réponse finale est .
Étape 5.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 6
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.1.4
Multipliez par .
Étape 6.2.1.5
Additionnez et .
Étape 6.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Élevez à la puissance .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 7
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.1.5
Additionnez et .
Étape 7.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 8
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Élevez à la puissance .
Étape 8.2.1.4
Multipliez par .
Étape 8.2.1.5
Additionnez et .
Étape 8.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1
Élevez à la puissance .
Étape 8.2.2.2
Additionnez et .
Étape 8.2.2.3
Élevez à la puissance .
Étape 8.2.3
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1.1
Factorisez à partir de .
Étape 8.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1.2.1
Factorisez à partir de .
Étape 8.2.3.1.2.2
Annulez le facteur commun.
Étape 8.2.3.1.2.3
Réécrivez l’expression.
Étape 8.2.3.2
Placez le signe moins devant la fraction.
Étape 8.2.4
La réponse finale est .
Étape 8.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 9
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Concave vers le bas sur car est négatif
Étape 10