Algèbre Exemples

Trouver la fonction réciproque f(x)=-x^2-4 , x>=0
,
Étape 1
Déterminez la plage de la fonction donnée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Étape 1.2
Convertissez en une inégalité.
Étape 2
Déterminez l’inverse.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Interchangez les variables.
Étape 2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez l’équation comme .
Étape 2.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez chaque terme dans par .
Étape 2.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.3.2.2
Divisez par .
Étape 2.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.3.1.1
Déplacez le moins un du dénominateur de .
Étape 2.2.3.3.1.2
Réécrivez comme .
Étape 2.2.3.3.1.3
Divisez par .
Étape 2.2.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3
Remplacez par pour montrer la réponse finale.
Étape 3
Déterminez l’inverse en utilisant le domaine et la plage de la fonction d’origine.
Étape 4