Entrer un problème...
Algèbre Exemples
Étape 1
Utilisez pour réécrire comme .
Étape 2
Différenciez les deux côtés de l’équation.
Étape 3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4
Étape 4.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 4.2
Multipliez les exposants dans .
Étape 4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2
Annulez le facteur commun de .
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Réécrivez l’expression.
Étape 4.3
Simplifiez
Étape 4.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.5
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.5.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.5.3
Remplacez toutes les occurrences de par .
Étape 4.6
Réécrivez comme .
Étape 4.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.8
Réécrivez comme .
Étape 4.9
Différenciez en utilisant la règle de la constante.
Étape 4.9.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.9.2
Additionnez et .
Étape 4.10
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.10.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.10.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.10.3
Remplacez toutes les occurrences de par .
Étape 4.11
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.12
Associez et .
Étape 4.13
Associez les numérateurs sur le dénominateur commun.
Étape 4.14
Simplifiez le numérateur.
Étape 4.14.1
Multipliez par .
Étape 4.14.2
Soustrayez de .
Étape 4.15
Placez le signe moins devant la fraction.
Étape 4.16
Associez et .
Étape 4.17
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.18
Réécrivez comme .
Étape 4.19
Associez et .
Étape 4.20
Simplifiez
Étape 4.20.1
Appliquez la propriété distributive.
Étape 4.20.2
Appliquez la propriété distributive.
Étape 4.20.3
Appliquez la propriété distributive.
Étape 4.20.4
Simplifiez le numérateur.
Étape 4.20.4.1
Simplifiez chaque terme.
Étape 4.20.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.20.4.1.2
Multipliez par en additionnant les exposants.
Étape 4.20.4.1.2.1
Déplacez .
Étape 4.20.4.1.2.2
Multipliez par .
Étape 4.20.4.1.2.2.1
Élevez à la puissance .
Étape 4.20.4.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.20.4.1.2.3
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.20.4.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.4.1.2.5
Additionnez et .
Étape 4.20.4.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.20.4.1.4
Annulez le facteur commun de .
Étape 4.20.4.1.4.1
Factorisez à partir de .
Étape 4.20.4.1.4.2
Factorisez à partir de .
Étape 4.20.4.1.4.3
Annulez le facteur commun.
Étape 4.20.4.1.4.4
Réécrivez l’expression.
Étape 4.20.4.1.5
Associez et .
Étape 4.20.4.1.6
Multipliez par .
Étape 4.20.4.1.7
Annulez le facteur commun de .
Étape 4.20.4.1.7.1
Factorisez à partir de .
Étape 4.20.4.1.7.2
Factorisez à partir de .
Étape 4.20.4.1.7.3
Annulez le facteur commun.
Étape 4.20.4.1.7.4
Réécrivez l’expression.
Étape 4.20.4.1.8
Associez et .
Étape 4.20.4.1.9
Associez et .
Étape 4.20.4.1.10
Placez sur le numérateur en utilisant la règle de l’exposant négatif .
Étape 4.20.4.1.11
Multipliez par en additionnant les exposants.
Étape 4.20.4.1.11.1
Déplacez .
Étape 4.20.4.1.11.2
Multipliez par .
Étape 4.20.4.1.11.2.1
Élevez à la puissance .
Étape 4.20.4.1.11.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.20.4.1.11.3
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.20.4.1.11.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.4.1.11.5
Additionnez et .
Étape 4.20.4.1.12
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.20.4.1.13
Multipliez par .
Étape 4.20.4.1.14
Associez et .
Étape 4.20.4.1.15
Placez le signe moins devant la fraction.
Étape 4.20.4.2
Soustrayez de .
Étape 4.20.4.3
Remettez les facteurs dans l’ordre dans .
Étape 4.20.5
Simplifiez le numérateur.
Étape 4.20.5.1
Factorisez à partir de .
Étape 4.20.5.1.1
Factorisez à partir de .
Étape 4.20.5.1.2
Factorisez à partir de .
Étape 4.20.5.1.3
Factorisez à partir de .
Étape 4.20.5.1.4
Factorisez à partir de .
Étape 4.20.5.1.5
Factorisez à partir de .
Étape 4.20.5.1.6
Factorisez à partir de .
Étape 4.20.5.1.7
Factorisez à partir de .
Étape 4.20.5.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.20.5.3
Associez et .
Étape 4.20.5.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.5.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.20.5.6
Associez et .
Étape 4.20.5.7
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.5.8
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.20.5.9
Multipliez par .
Étape 4.20.5.10
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.5.11
Réécrivez en forme factorisée.
Étape 4.20.5.11.1
Simplifiez chaque terme.
Étape 4.20.5.11.1.1
Multipliez par .
Étape 4.20.5.11.1.2
Multipliez par .
Étape 4.20.5.11.2
Soustrayez de .
Étape 4.20.5.11.3
Appliquez la propriété distributive.
Étape 4.20.5.11.4
Multipliez par en additionnant les exposants.
Étape 4.20.5.11.4.1
Déplacez .
Étape 4.20.5.11.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.20.5.11.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.5.11.4.4
Additionnez et .
Étape 4.20.5.11.4.5
Divisez par .
Étape 4.20.5.11.5
Simplifiez .
Étape 4.20.5.11.6
Multipliez par en additionnant les exposants.
Étape 4.20.5.11.6.1
Déplacez .
Étape 4.20.5.11.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.20.5.11.6.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.5.11.6.4
Additionnez et .
Étape 4.20.5.11.6.5
Divisez par .
Étape 4.20.5.11.7
Remettez les termes dans l’ordre.
Étape 4.20.5.11.8
Factorisez par regroupement.
Étape 4.20.5.11.8.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 4.20.5.11.8.1.1
Factorisez à partir de .
Étape 4.20.5.11.8.1.2
Réécrivez comme plus
Étape 4.20.5.11.8.1.3
Appliquez la propriété distributive.
Étape 4.20.5.11.8.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.20.5.11.8.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.20.5.11.8.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.20.5.11.8.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4.20.6
Associez et .
Étape 4.20.7
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.20.8
Associez.
Étape 4.20.9
Multipliez par en additionnant les exposants.
Étape 4.20.9.1
Déplacez .
Étape 4.20.9.2
Multipliez par .
Étape 4.20.9.2.1
Élevez à la puissance .
Étape 4.20.9.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.20.9.3
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.20.9.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.20.9.5
Additionnez et .
Étape 4.20.10
Multipliez par .
Étape 4.20.11
Remettez les facteurs dans l’ordre dans .
Étape 5
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Multipliez les deux côtés par .
Étape 6.3
Simplifiez
Étape 6.3.1
Simplifiez le côté gauche.
Étape 6.3.1.1
Simplifiez .
Étape 6.3.1.1.1
Réduisez l’expression en annulant les facteurs communs.
Étape 6.3.1.1.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 6.3.1.1.1.2
Annulez le facteur commun de .
Étape 6.3.1.1.1.2.1
Annulez le facteur commun.
Étape 6.3.1.1.1.2.2
Réécrivez l’expression.
Étape 6.3.1.1.1.3
Annulez le facteur commun de .
Étape 6.3.1.1.1.3.1
Annulez le facteur commun.
Étape 6.3.1.1.1.3.2
Réécrivez l’expression.
Étape 6.3.1.1.2
Développez à l’aide de la méthode FOIL.
Étape 6.3.1.1.2.1
Appliquez la propriété distributive.
Étape 6.3.1.1.2.2
Appliquez la propriété distributive.
Étape 6.3.1.1.2.3
Appliquez la propriété distributive.
Étape 6.3.1.1.3
Simplifiez et associez les termes similaires.
Étape 6.3.1.1.3.1
Simplifiez chaque terme.
Étape 6.3.1.1.3.1.1
Multipliez par en additionnant les exposants.
Étape 6.3.1.1.3.1.1.1
Déplacez .
Étape 6.3.1.1.3.1.1.2
Multipliez par .
Étape 6.3.1.1.3.1.2
Multipliez par .
Étape 6.3.1.1.3.1.3
Réécrivez comme .
Étape 6.3.1.1.3.1.4
Multipliez par .
Étape 6.3.1.1.3.2
Soustrayez de .
Étape 6.3.1.1.4
Appliquez la propriété distributive.
Étape 6.3.1.1.5
Remettez dans l’ordre.
Étape 6.3.1.1.5.1
Déplacez .
Étape 6.3.1.1.5.2
Déplacez .
Étape 6.3.2
Simplifiez le côté droit.
Étape 6.3.2.1
Multipliez par .
Étape 6.4
Résolvez .
Étape 6.4.1
Factorisez à partir de .
Étape 6.4.1.1
Factorisez à partir de .
Étape 6.4.1.2
Factorisez à partir de .
Étape 6.4.1.3
Factorisez à partir de .
Étape 6.4.1.4
Factorisez à partir de .
Étape 6.4.1.5
Factorisez à partir de .
Étape 6.4.2
Factorisez.
Étape 6.4.2.1
Factorisez par regroupement.
Étape 6.4.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 6.4.2.1.1.1
Factorisez à partir de .
Étape 6.4.2.1.1.2
Réécrivez comme plus
Étape 6.4.2.1.1.3
Appliquez la propriété distributive.
Étape 6.4.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 6.4.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 6.4.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 6.4.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 6.4.2.2
Supprimez les parenthèses inutiles.
Étape 6.4.3
Divisez chaque terme dans par et simplifiez.
Étape 6.4.3.1
Divisez chaque terme dans par .
Étape 6.4.3.2
Simplifiez le côté gauche.
Étape 6.4.3.2.1
Annulez le facteur commun de .
Étape 6.4.3.2.1.1
Annulez le facteur commun.
Étape 6.4.3.2.1.2
Réécrivez l’expression.
Étape 6.4.3.2.2
Annulez le facteur commun de .
Étape 6.4.3.2.2.1
Annulez le facteur commun.
Étape 6.4.3.2.2.2
Divisez par .
Étape 7
Remplacez par.