Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Complétez le carré pour .
Étape 1.2.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.2.2
Étudiez la forme du sommet d’une parabole.
Étape 1.2.3
Déterminez la valeur de en utilisant la formule .
Étape 1.2.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.2.3.2
Simplifiez le côté droit.
Étape 1.2.3.2.1
Annulez le facteur commun à et .
Étape 1.2.3.2.1.1
Factorisez à partir de .
Étape 1.2.3.2.1.2
Annulez les facteurs communs.
Étape 1.2.3.2.1.2.1
Factorisez à partir de .
Étape 1.2.3.2.1.2.2
Annulez le facteur commun.
Étape 1.2.3.2.1.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2
Annulez le facteur commun à et .
Étape 1.2.3.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2
Annulez les facteurs communs.
Étape 1.2.3.2.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2.2
Annulez le facteur commun.
Étape 1.2.3.2.2.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2.2.4
Divisez par .
Étape 1.2.4
Déterminez la valeur de en utilisant la formule .
Étape 1.2.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.2.4.2
Simplifiez le côté droit.
Étape 1.2.4.2.1
Simplifiez chaque terme.
Étape 1.2.4.2.1.1
Élevez à la puissance .
Étape 1.2.4.2.1.2
Multipliez par .
Étape 1.2.4.2.1.3
Divisez par .
Étape 1.2.4.2.1.4
Multipliez par .
Étape 1.2.4.2.2
Soustrayez de .
Étape 1.2.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.3
Remplacez par dans l’équation .
Étape 1.4
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 1.5
Complétez le carré pour .
Étape 1.5.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.5.2
Étudiez la forme du sommet d’une parabole.
Étape 1.5.3
Déterminez la valeur de en utilisant la formule .
Étape 1.5.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.5.3.2
Simplifiez le côté droit.
Étape 1.5.3.2.1
Annulez le facteur commun à et .
Étape 1.5.3.2.1.1
Factorisez à partir de .
Étape 1.5.3.2.1.2
Déplacez le moins un du dénominateur de .
Étape 1.5.3.2.2
Réécrivez comme .
Étape 1.5.3.2.3
Multipliez par .
Étape 1.5.4
Déterminez la valeur de en utilisant la formule .
Étape 1.5.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.5.4.2
Simplifiez le côté droit.
Étape 1.5.4.2.1
Simplifiez chaque terme.
Étape 1.5.4.2.1.1
Élevez à la puissance .
Étape 1.5.4.2.1.2
Multipliez par .
Étape 1.5.4.2.1.3
Divisez par .
Étape 1.5.4.2.1.4
Multipliez par .
Étape 1.5.4.2.2
Additionnez et .
Étape 1.5.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.6
Remplacez par dans l’équation .
Étape 1.7
Déplacez du côté droit de l’équation en ajoutant des deux côtés.
Étape 1.8
Simplifiez .
Étape 1.8.1
Additionnez et .
Étape 1.8.2
Soustrayez de .
Étape 1.9
Inversez le signe de chaque terme de l’équation afin que le terme du côté droit soit positif.
Étape 1.10
Divisez chaque terme par pour rendre le côté droit égal à un.
Étape 1.11
Simplifiez chaque terme de l’équation afin de définir le côté droit égal à . La forme normalisée d’une ellipse ou hyperbole nécessite que le côté droit de l’équation soit .
Étape 2
C’est la forme d’une hyperbole. Utilisez cette forme pour déterminer les valeurs utilisées pour déterminer les asymptotes de l’hyperbole.
Étape 3
Faites correspondre les valeurs dans cette hyperbole avec celles de la forme normalisée. La variable représente le décalage x par rapport à l’origine, représente le décalage y par rapport à l’origine, .
Étape 4
Les asymptotes suivent la forme car cette hyperbole ouvre vers le haut et vers le bas.
Étape 5
Étape 5.1
Supprimez les parenthèses.
Étape 5.2
Simplifiez .
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Multipliez par .
Étape 5.2.1.2
Appliquez la propriété distributive.
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 6
Étape 6.1
Supprimez les parenthèses.
Étape 6.2
Simplifiez .
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Multipliez par .
Étape 6.2.1.2
Appliquez la propriété distributive.
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 7
Cette hyperbole a deux asymptotes.
Étape 8
Les asymptotes sont et .
Asymptotes :
Étape 9