Entrer un problème...
Algèbre Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.1.6
Factorisez à partir de .
Étape 2.1.1.7
Factorisez à partir de .
Étape 2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.4
Réécrivez comme .
Étape 2.1.5
Factorisez.
Étape 2.1.5.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.1.6
Factorisez.
Étape 2.1.6.1
Associez les exposants.
Étape 2.1.6.1.1
Factorisez à partir de .
Étape 2.1.6.1.2
Réécrivez comme .
Étape 2.1.6.1.3
Factorisez à partir de .
Étape 2.1.6.1.4
Réécrivez comme .
Étape 2.1.6.1.5
Élevez à la puissance .
Étape 2.1.6.1.6
Élevez à la puissance .
Étape 2.1.6.1.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6.1.8
Additionnez et .
Étape 2.1.6.2
Supprimez les parenthèses inutiles.
Étape 2.1.7
Factorisez le signe négatif.
Étape 2.1.8
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Étape 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.2
Simplifiez .
Étape 2.3.2.2.1
Réécrivez comme .
Étape 2.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.2.3
Plus ou moins est .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Définissez le égal à .
Étape 2.4.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie. La multiplicité d’une racine est le nombre de fois que la racine apparaît.
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
Étape 3