Algèbre Exemples

Trouver les racines/zéros en cherchant les racines rationnelles avec le lemme de Gauss f(x)=6x^4-21x^3-4x^2+24x-35
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Appliquez la règle de produit à .
Étape 4.1.2
Élevez à la puissance .
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Factorisez à partir de .
Étape 4.1.4.3
Annulez le facteur commun.
Étape 4.1.4.4
Réécrivez l’expression.
Étape 4.1.5
Associez et .
Étape 4.1.6
Multipliez par .
Étape 4.1.7
Appliquez la règle de produit à .
Étape 4.1.8
Élevez à la puissance .
Étape 4.1.9
Élevez à la puissance .
Étape 4.1.10
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.10.1
Associez et .
Étape 4.1.10.2
Multipliez par .
Étape 4.1.11
Placez le signe moins devant la fraction.
Étape 4.1.12
Appliquez la règle de produit à .
Étape 4.1.13
Élevez à la puissance .
Étape 4.1.14
Élevez à la puissance .
Étape 4.1.15
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.15.1
Factorisez à partir de .
Étape 4.1.15.2
Annulez le facteur commun.
Étape 4.1.15.3
Réécrivez l’expression.
Étape 4.1.16
Multipliez par .
Étape 4.1.17
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.17.1
Factorisez à partir de .
Étape 4.1.17.2
Annulez le facteur commun.
Étape 4.1.17.3
Réécrivez l’expression.
Étape 4.1.18
Multipliez par .
Étape 4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2
Soustrayez de .
Étape 4.3
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Écrivez comme une fraction avec le dénominateur .
Étape 4.3.2
Multipliez par .
Étape 4.3.3
Multipliez par .
Étape 4.3.4
Écrivez comme une fraction avec le dénominateur .
Étape 4.3.5
Multipliez par .
Étape 4.3.6
Multipliez par .
Étape 4.3.7
Écrivez comme une fraction avec le dénominateur .
Étape 4.3.8
Multipliez par .
Étape 4.3.9
Multipliez par .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Multipliez par .
Étape 4.5.3
Multipliez par .
Étape 4.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Additionnez et .
Étape 4.6.2
Soustrayez de .
Étape 4.6.3
Divisez par .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Ensuite, déterminez les racines du polynôme restant. Le degré du polynôme a été réduit de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
  
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
  
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.9
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
 
Étape 6.10
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
 
Étape 6.11
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.12
Simplifiez le polynôme quotient.
Étape 7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Factorisez à partir de .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Factorisez à partir de .
Étape 7.4
Factorisez à partir de .
Étape 7.5
Factorisez à partir de .
Étape 8
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 9