Algèbre Exemples

Identifier les zéros et leurs multiplicités (x^2+x-12)^5(x-1+ racine carrée de 7)^3
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.2
Appliquez la règle de produit à .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Définissez le égal à .
Étape 2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Définissez le égal à .
Étape 2.4.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Définissez le égal à .
Étape 2.5.2.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie. La multiplicité d’une racine est le nombre de fois que la racine apparaît.
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
Étape 3