Algèbre Exemples

Trouver l'équation quadratique 4 , -11/3
,
Étape 1
et sont les deux solutions réelles distinctes de l’équation quadratique, ce qui signifie que et sont les facteurs de l’équation quadratique.
Étape 2
Placez le signe moins devant la fraction.
Étape 3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Appliquez la propriété distributive.
Étape 3.3
Appliquez la propriété distributive.
Étape 4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Associez et .
Étape 4.1.3
Déplacez à gauche de .
Étape 4.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Multipliez par .
Étape 4.1.4.2
Associez et .
Étape 4.1.4.3
Multipliez par .
Étape 4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3
Associez et .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.6
Associez et .
Étape 4.7
Associez les numérateurs sur le dénominateur commun.
Étape 4.8
Associez les numérateurs sur le dénominateur commun.
Étape 5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déplacez à gauche de .
Étape 5.2
Multipliez par .
Étape 5.3
Soustrayez de .
Étape 5.4
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1.1
Factorisez à partir de .
Étape 5.4.1.2
Réécrivez comme plus
Étape 5.4.1.3
Appliquez la propriété distributive.
Étape 5.4.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 5.4.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.4.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 6
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Appliquez la propriété distributive.
Étape 6.2
Appliquez la propriété distributive.
Étape 6.3
Appliquez la propriété distributive.
Étape 7
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.1
Déplacez .
Étape 7.1.1.2
Multipliez par .
Étape 7.1.2
Multipliez par .
Étape 7.1.3
Multipliez par .
Étape 7.2
Soustrayez de .
Étape 8
Divisez la fraction en deux fractions.
Étape 9
Divisez la fraction en deux fractions.
Étape 10
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Annulez le facteur commun.
Étape 10.2
Divisez par .
Étape 11
Placez le signe moins devant la fraction.
Étape 12
L’équation quadratique standard en utilisant l’ensemble de solutions donné est .
Étape 13