Entrer un problème...
Algèbre Exemples
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme où est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Multipliez par .
Étape 4.1.5
Multipliez par .
Étape 4.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.1
Additionnez et .
Étape 4.2.2
Additionnez et .
Étape 4.2.3
Soustrayez de .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
Étape 6.9
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.10
Simplifiez le polynôme quotient.
Étape 7
Réécrivez comme .
Étape 8
Réécrivez comme .
Étape 9
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 10
Étape 10.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 10.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 10.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 10.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 10.3
Réécrivez comme .
Étape 10.4
Réécrivez comme .
Étape 10.5
Factorisez.
Étape 10.5.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 10.5.2
Supprimez les parenthèses inutiles.
Étape 11
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 12
Étape 12.1
Définissez égal à .
Étape 12.2
Soustrayez des deux côtés de l’équation.
Étape 13
Étape 13.1
Définissez égal à .
Étape 13.2
Résolvez pour .
Étape 13.2.1
Soustrayez des deux côtés de l’équation.
Étape 13.2.2
Divisez chaque terme dans par et simplifiez.
Étape 13.2.2.1
Divisez chaque terme dans par .
Étape 13.2.2.2
Simplifiez le côté gauche.
Étape 13.2.2.2.1
Annulez le facteur commun de .
Étape 13.2.2.2.1.1
Annulez le facteur commun.
Étape 13.2.2.2.1.2
Divisez par .
Étape 13.2.2.3
Simplifiez le côté droit.
Étape 13.2.2.3.1
Placez le signe moins devant la fraction.
Étape 14
Étape 14.1
Définissez égal à .
Étape 14.2
Résolvez pour .
Étape 14.2.1
Ajoutez aux deux côtés de l’équation.
Étape 14.2.2
Divisez chaque terme dans par et simplifiez.
Étape 14.2.2.1
Divisez chaque terme dans par .
Étape 14.2.2.2
Simplifiez le côté gauche.
Étape 14.2.2.2.1
Annulez le facteur commun de .
Étape 14.2.2.2.1.1
Annulez le facteur commun.
Étape 14.2.2.2.1.2
Divisez par .
Étape 15
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 16