Entrer un problème...
Algèbre Exemples
, ,
Étape 1
Définissez la fonction de résultat composé.
Étape 2
Évaluez en remplaçant la valeur de par .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Divisez par .
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Étape 6.1
Réduisez l’expression en annulant les facteurs communs.
Étape 6.1.1
Factorisez à partir de .
Étape 6.1.2
Factorisez à partir de .
Étape 6.1.3
Annulez le facteur commun.
Étape 6.1.4
Réécrivez l’expression.
Étape 6.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 6.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 6.3.1
Multipliez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Étape 6.3.2.1
Simplifiez chaque terme.
Étape 6.3.2.1.1
Annulez le facteur commun de .
Étape 6.3.2.1.1.1
Annulez le facteur commun.
Étape 6.3.2.1.1.2
Réécrivez l’expression.
Étape 6.3.2.1.2
Multipliez par .
Étape 6.3.3
Simplifiez le côté droit.
Étape 6.3.3.1
Multipliez par .
Étape 6.4
Résolvez l’équation.
Étape 6.4.1
Soustrayez des deux côtés de l’équation.
Étape 6.4.2
Divisez chaque terme dans par et simplifiez.
Étape 6.4.2.1
Divisez chaque terme dans par .
Étape 6.4.2.2
Simplifiez le côté gauche.
Étape 6.4.2.2.1
Annulez le facteur commun de .
Étape 6.4.2.2.1.1
Annulez le facteur commun.
Étape 6.4.2.2.1.2
Divisez par .
Étape 6.4.2.3
Simplifiez le côté droit.
Étape 6.4.2.3.1
Divisez par .
Étape 7
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 8