Algèbre Exemples

Trouver trois solutions de couples ordonnés x+y+z=1
Étape 1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Choisissez toutes les valeurs pour et qui sont dans le domaine pour les insérer dans l’équation.
Étape 3
Choisissez pour remplacer et pour remplacer .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Supprimez les parenthèses.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Multipliez par .
Étape 3.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Additionnez et .
Étape 3.2.2.2
Soustrayez de .
Étape 3.3
Utilisez les valeurs , et pour former la paire ordonnée.
Étape 4
Choisissez pour remplacer et pour remplacer .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Supprimez les parenthèses.
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Multipliez par .
Étape 4.2.1.2
Multipliez par .
Étape 4.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Soustrayez de .
Étape 4.2.2.2
Soustrayez de .
Étape 4.3
Utilisez les valeurs , et pour former la paire ordonnée.
Étape 5
Choisissez pour remplacer et pour remplacer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Supprimez les parenthèses.
Étape 5.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Multipliez par .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Soustrayez de .
Étape 5.3
Utilisez les valeurs , et pour former la paire ordonnée.
Étape 6
Ce sont trois solutions possibles à l’équation.