Algèbre Exemples

Multiplier (25-4x^2)/(6x^2+9x-15)*(6x^2-2x-4)/(2x^2-x-10)
Étape 1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Réécrivez comme .
Étape 1.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.4
Multipliez par .
Étape 2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Factorisez à partir de .
Étape 2.2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Réécrivez comme plus
Étape 2.2.1.3
Appliquez la propriété distributive.
Étape 2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.1.4
Factorisez à partir de .
Étape 3.1.5
Factorisez à partir de .
Étape 3.2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Réécrivez comme plus
Étape 3.2.1.3
Appliquez la propriété distributive.
Étape 3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Réécrivez comme plus
Étape 4.1.3
Appliquez la propriété distributive.
Étape 4.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Annulez le facteur commun.
Étape 5.4
Réécrivez l’expression.
Étape 6
Multipliez par .
Étape 7
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remettez les termes dans l’ordre.
Étape 7.2
Annulez le facteur commun.
Étape 7.3
Réécrivez l’expression.
Étape 8
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Réécrivez comme .
Étape 8.2
Factorisez à partir de .
Étape 8.3
Factorisez à partir de .
Étape 8.4
Remettez les termes dans l’ordre.
Étape 8.5
Annulez le facteur commun.
Étape 8.6
Réécrivez l’expression.
Étape 9
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Placez le signe moins devant la fraction.