Algèbre Exemples

Résoudre en factorisant (2x)/(x+5)-10/(x-5)=(2x^2+50)/(x^2-25)
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Réécrivez comme .
Étape 2.1.2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Multipliez par .
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Réorganisez les facteurs de .
Étape 2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.6
Associez les numérateurs sur le dénominateur commun.
Étape 2.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Appliquez la propriété distributive.
Étape 2.7.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.1
Déplacez .
Étape 2.7.2.2
Multipliez par .
Étape 2.7.3
Multipliez par .
Étape 2.7.4
Appliquez la propriété distributive.
Étape 2.7.5
Multipliez par .
Étape 2.7.6
Appliquez la propriété distributive.
Étape 2.7.7
Multipliez par .
Étape 2.8
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Soustrayez de .
Étape 2.8.2
Additionnez et .
Étape 2.9
Soustrayez de .
Étape 2.10
Soustrayez de .
Étape 2.11
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.11.1
Factorisez à partir de .
Étape 2.11.2
Factorisez à partir de .
Étape 2.11.3
Factorisez à partir de .
Étape 2.12
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.12.1
Factorisez à partir de .
Étape 2.12.2
Réécrivez comme .
Étape 2.12.3
Factorisez à partir de .
Étape 2.12.4
Réécrivez comme .
Étape 2.12.5
Annulez le facteur commun.
Étape 2.12.6
Réécrivez l’expression.
Étape 2.13
Multipliez par .
Étape 2.14
Placez le signe moins devant la fraction.
Étape 3
Définissez le numérateur égal à zéro.
Étape 4
Comme , il n’y a aucune solution.
Aucune solution