Algèbre Exemples

Résoudre en complétant le carré 9x^2-6x=8
Étape 1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.1
Annulez le facteur commun.
Étape 1.2.1.1.2
Divisez par .
Étape 1.2.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.2.1
Factorisez à partir de .
Étape 1.2.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.2.2.1
Factorisez à partir de .
Étape 1.2.1.2.2.2
Annulez le facteur commun.
Étape 1.2.1.2.2.3
Réécrivez l’expression.
Étape 1.2.1.3
Placez le signe moins devant la fraction.
Étape 2
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 3
Ajoutez le terme de chaque côté de l’équation.
Étape 4
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1.1
Appliquez la règle de produit à .
Étape 4.1.1.1.2
Appliquez la règle de produit à .
Étape 4.1.1.2
Élevez à la puissance .
Étape 4.1.1.3
Multipliez par .
Étape 4.1.1.4
Un à n’importe quelle puissance est égal à un.
Étape 4.1.1.5
Élevez à la puissance .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.1.2
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Élevez à la puissance .
Étape 4.2.1.1.3
Multipliez par .
Étape 4.2.1.1.4
Un à n’importe quelle puissance est égal à un.
Étape 4.2.1.1.5
Élevez à la puissance .
Étape 4.2.1.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.2.1
Additionnez et .
Étape 4.2.1.2.2.2
Divisez par .
Étape 5
Factorisez le carré trinomial parfait en .
Étape 6
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2
Toute racine de est .
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.2.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 6.3.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.2.4
Additionnez et .
Étape 6.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.3.4.3
Associez et .
Étape 6.3.4.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.4.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.5.1
Multipliez par .
Étape 6.3.4.5.2
Additionnez et .
Étape 6.3.4.6
Placez le signe moins devant la fraction.
Étape 6.3.5
La solution complète est le résultat des parties positive et négative de la solution.