Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Réorganisez les facteurs de .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Simplifiez le numérateur.
Étape 2.5.1
Appliquez la propriété distributive.
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Appliquez la propriété distributive.
Étape 2.5.4
Multipliez par en additionnant les exposants.
Étape 2.5.4.1
Déplacez .
Étape 2.5.4.2
Multipliez par .
Étape 2.5.5
Multipliez par .
Étape 2.5.6
Soustrayez de .
Étape 2.5.7
Additionnez et .
Étape 2.5.8
Réécrivez en forme factorisée.
Étape 2.5.8.1
Réécrivez comme .
Étape 2.5.8.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 3
Définissez le numérateur égal à zéro.
Étape 4
Étape 4.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2
Définissez égal à et résolvez .
Étape 4.2.1
Définissez égal à .
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Résolvez pour .
Étape 4.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.3.2.2.1
Divisez chaque terme dans par .
Étape 4.3.2.2.2
Simplifiez le côté gauche.
Étape 4.3.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3.2.2.2.2
Divisez par .
Étape 4.3.2.2.3
Simplifiez le côté droit.
Étape 4.3.2.2.3.1
Divisez par .
Étape 4.4
La solution finale est l’ensemble des valeurs qui rendent vraie.