Algèbre Exemples

Résoudre en factorisant (x^2-4)^2-2(x^2-4)=24
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
Appliquez la propriété distributive.
Étape 2.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.3.1.1.2
Additionnez et .
Étape 2.1.3.1.2
Déplacez à gauche de .
Étape 2.1.3.1.3
Multipliez par .
Étape 2.1.3.2
Soustrayez de .
Étape 2.1.4
Appliquez la propriété distributive.
Étape 2.1.5
Multipliez par .
Étape 2.2
Soustrayez de .
Étape 2.3
Additionnez et .
Étape 2.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Soustrayez de .
Étape 2.4.2
Additionnez et .
Étape 3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Factorisez à partir de .
Étape 3.3
Factorisez à partir de .
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Réécrivez comme .
Étape 5.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2.2.3
Plus ou moins est .
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :