Algèbre Exemples

Résoudre en factorisant x^4+100=29x^2
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Réécrivez comme .
Étape 4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 5
Réécrivez comme .
Étape 6
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 6.2
Supprimez les parenthèses inutiles.
Étape 7
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 8
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Définissez égal à .
Étape 8.2
Soustrayez des deux côtés de l’équation.
Étape 9
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Définissez égal à .
Étape 9.2
Ajoutez aux deux côtés de l’équation.
Étape 10
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Définissez égal à .
Étape 10.2
Soustrayez des deux côtés de l’équation.
Étape 11
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Définissez égal à .
Étape 11.2
Ajoutez aux deux côtés de l’équation.
Étape 12
La solution finale est l’ensemble des valeurs qui rendent vraie.