Algèbre Exemples

Resolva a Inequação para x logarithme de x+ logarithme de 2-x<1
Étape 1
Convertissez l’inégalité en une égalité.
Étape 2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez la propriété du produit des logarithmes, .
Étape 2.1.2
Simplifiez en multipliant.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Déplacez à gauche de .
Étape 2.1.2.2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Déplacez .
Étape 2.1.3.2
Multipliez par .
Étape 2.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez l’équation comme .
Étape 2.3.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.3.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.1
Élevez à la puissance .
Étape 2.3.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.2.1
Multipliez par .
Étape 2.3.5.1.2.2
Multipliez par .
Étape 2.3.5.1.3
Soustrayez de .
Étape 2.3.5.1.4
Réécrivez comme .
Étape 2.3.5.1.5
Réécrivez comme .
Étape 2.3.5.1.6
Réécrivez comme .
Étape 2.3.5.1.7
Réécrivez comme .
Étape 2.3.5.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.5.1.9
Déplacez à gauche de .
Étape 2.3.5.2
Multipliez par .
Étape 2.3.5.3
Simplifiez .
Étape 2.3.6
La réponse finale est la combinaison des deux solutions.
Étape 3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Convertissez l’inégalité en une équation.
Étape 3.2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Factorisez à partir de .
Étape 3.2.2.3
Factorisez à partir de .
Étape 3.2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.2.4
Définissez égal à .
Étape 3.2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Définissez égal à .
Étape 3.2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.2.2.1
Divisez chaque terme dans par .
Étape 3.2.5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.2.5.2.2.2.2
Divisez par .
Étape 3.2.5.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.2.2.3.1
Divisez par .
Étape 3.2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3.2.7
Utilisez chaque racine pour créer des intervalles de test.
Étape 3.2.8
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 3.2.8.1.2
Remplacez par dans l’inégalité d’origine.
Étape 3.2.8.1.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 3.2.8.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 3.2.8.2.2
Remplacez par dans l’inégalité d’origine.
Étape 3.2.8.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 3.2.8.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 3.2.8.3.2
Remplacez par dans l’inégalité d’origine.
Étape 3.2.8.3.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 3.2.8.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 3.2.9
La solution se compose de tous les intervalles vrais.
Étape 3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
Utilisez chaque racine pour créer des intervalles de test.
Étape 5
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.1.2
Remplacez par dans l’inégalité d’origine.
Étape 5.1.3
Déterminez si l’inégalité est vraie.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
L’équation ne peut pas être résolue car elle est indéfinie.
Étape 5.1.3.2
Le côté gauche n’a pas de solution, ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Faux
Étape 5.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.2.2
Remplacez par dans l’inégalité d’origine.
Étape 5.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 5.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 5.3.2
Remplacez par dans l’inégalité d’origine.
Étape 5.3.3
Déterminez si l’inégalité est vraie.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
L’équation ne peut pas être résolue car elle est indéfinie.
Étape 5.3.3.2
Le côté gauche n’a pas de solution, ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Faux
Étape 5.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 6
La solution se compose de tous les intervalles vrais.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 8