Algèbre Exemples

Résoudre en utilisant la formule quadratique 18=-2(x-1)^2
Étape 1
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Réécrivez comme .
Étape 1.1.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Appliquez la propriété distributive.
Étape 1.1.1.2.2
Appliquez la propriété distributive.
Étape 1.1.1.2.3
Appliquez la propriété distributive.
Étape 1.1.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1.1
Multipliez par .
Étape 1.1.1.3.1.2
Déplacez à gauche de .
Étape 1.1.1.3.1.3
Réécrivez comme .
Étape 1.1.1.3.1.4
Réécrivez comme .
Étape 1.1.1.3.1.5
Multipliez par .
Étape 1.1.1.3.2
Soustrayez de .
Étape 1.1.1.4
Appliquez la propriété distributive.
Étape 1.1.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.5.1
Multipliez par .
Étape 1.1.1.5.2
Multipliez par .
Étape 1.2
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.3
Ajoutez aux deux côtés de l’équation.
Étape 1.3
Additionnez et .
Étape 2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Réécrivez comme .
Étape 4.1.5
Réécrivez comme .
Étape 4.1.6
Réécrivez comme .
Étape 4.1.7
Réécrivez comme .
Étape 4.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.1.9
Déplacez à gauche de .
Étape 4.2
Multipliez par .
Étape 4.3
Simplifiez .