Algèbre Exemples

Resolva a Inequação para x (x-4)(3x+1)<(2x-6)(x-2)+4
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en ajoutant des zéros.
Étape 1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Appliquez la propriété distributive.
Étape 1.4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Déplacez .
Étape 1.4.1.2.2
Multipliez par .
Étape 1.4.1.3
Multipliez par .
Étape 1.4.1.4
Multipliez par .
Étape 1.4.1.5
Multipliez par .
Étape 1.4.2
Soustrayez de .
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Appliquez la propriété distributive.
Étape 2.1.1.2
Appliquez la propriété distributive.
Étape 2.1.1.3
Appliquez la propriété distributive.
Étape 2.1.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1.1
Déplacez .
Étape 2.1.2.1.1.2
Multipliez par .
Étape 2.1.2.1.2
Multipliez par .
Étape 2.1.2.1.3
Multipliez par .
Étape 2.1.2.2
Soustrayez de .
Étape 2.2
Additionnez et .
Étape 3
Déplacez tous les termes contenant du côté gauche de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.2
Ajoutez aux deux côtés de l’inégalité.
Étape 3.3
Soustrayez de .
Étape 3.4
Additionnez et .
Étape 4
Convertissez l’inégalité en une équation.
Étape 5
Soustrayez des deux côtés de l’équation.
Étape 6
Soustrayez de .
Étape 7
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.2
Écrivez la forme factorisée avec ces entiers.
Étape 8
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 9
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Définissez égal à .
Étape 9.2
Ajoutez aux deux côtés de l’équation.
Étape 10
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Définissez égal à .
Étape 10.2
Soustrayez des deux côtés de l’équation.
Étape 11
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 12
Utilisez chaque racine pour créer des intervalles de test.
Étape 13
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.1.2
Remplacez par dans l’inégalité d’origine.
Étape 13.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 13.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.2.2
Remplacez par dans l’inégalité d’origine.
Étape 13.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 13.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 13.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 13.3.2
Remplacez par dans l’inégalité d’origine.
Étape 13.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 13.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 14
La solution se compose de tous les intervalles vrais.
Étape 15
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 16